If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-157=0
a = 1; b = 4; c = -157;
Δ = b2-4ac
Δ = 42-4·1·(-157)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{161}}{2*1}=\frac{-4-2\sqrt{161}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{161}}{2*1}=\frac{-4+2\sqrt{161}}{2} $
| 6x*8x=300 | | 9+3w=30 | | 20x+22x=420 | | 104=3x-1+4x | | A=2x+6 | | 4x*6x=300 | | 5.2+0.5x=17.2 | | 3(x-7)+14=-4 | | X^2+10x+32x=0 | | -.25x=65-x | | x+4.3=28 | | .25=65-x/x | | x+11.3=18 | | x/0.3=0.3 | | 3a−3=3−3a | | y+3y=20+12 | | 3a−3=3−3a. | | 6x+3=9+2x | | 0,8x=28-2x | | -1/4u=2 | | 4x²-4x-31x=4 | | −2(x+10)(100x2−81)=0 | | -40=2b | | 100+50+3y=180 | | 3x+12=4x-23(x+1) | | 0.05x=500 | | 2y+110+40=180 | | X=(170+y)-(130-y) | | 1.2+8x=-6x+1.2 | | 6066=n22 | | O.5x-6=-2.5x+9 | | Y²+3y-8=0 |